Flag-transitive Planes of Even Order1

نویسندگان

  • H. R. Pitt
  • A. E. Ingham
  • R. ROTH
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubic Extensions of Flag-transitive Planes, I. Even Order

The collineation groups of even order translation planes which are cubic extensions of flag-transitive planes are determined. 2000 Mathematics Subject Classification. Primary 51E.

متن کامل

Odd order flag-transitive a‰ne planes of dimension three over their kernel

With the exception of Hering’s plane of order 27, all known odd order flag-transitive a‰ne planes are one of two types: admitting a cyclic transitive action on the line at infinity, or admitting a transitive action on the line at infinity with two equal-sized cyclic orbits. In this paper we show that when the dimension over the kernel for these planes is three, then the known examples are the o...

متن کامل

Odd order flag-transitive affine planes of dimension three over their kernel

With the exception of Bering's plane of order 27, all known odd order flag-transitive affine planes are one of two types: admitting a cyclic transitive action on the line at infinity, or admitting a transitive action on the line at infinity with two equal-sized cyclic orbits. In this paper we show that when the dimension over the kernel for these planes is three, then the known examples are the...

متن کامل

A Class of Flag Transitive Planes

A class of translation affine planes of order q2, where q is a power of a prime/>>3 is constructed. These planes have an interesting property that their collineation groups are flag transitive.

متن کامل

Nearly flag-transitive affine planes

Spreads of orthogonal vector spaces are used to construct many translation planes of even order q, for odd m > 1, having a collineation with a (q − 1)-cycle on the line at infinity and on each of two affine lines.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010